Downloaded from rstb.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL |
OF SOCIETY

A Model of Bipedal Locomotion on Compliant Legs
R. McN. Alexander

Phil. Trans. R. Soc. Lond. B 1992 338, 189-198
doi: 10.1098/rsth.1992.0138

B

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
(@)

To subscribe to Phil. Trans. R. Soc. Lond. B go to: http://rstb.royalsocietypublishing.org/subscriptions

This journal is © 1992 The Royal Society


http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;338/1284/189&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/338/1284/189.full.pdf
http://rstb.royalsocietypublishing.org/subscriptions
http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

A model of bipedal locomotion on compliant legs

R. McN. ALEXANDER

Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT, U.K.

SUMMARY

Simple mathematical models capable of walking or running are used to compare the merits of bipedal
gaits. Stride length, duty factor (the fraction of the stride, for which the foot is on the ground) and the
pattern of force on the ground are varied, and the optimum gait is deemed to be the one that minimizes
the positive work that the muscles must perform, per unit distance travelled.

Even the simplest model, whose legs have neither mass nor elastic compliance, predicts the changes of
duty factor and force pattern that people make as they increase their speed of walking. It predicts a
sudden change to running at a critical speed, but this is much faster than the speed at which people
make the change. When elastic compliance is incorporated in the model, unnaturally fast walking
becomes uncompetitive. However, a slow run with very brief foot contact becomes the optimum gait at
low speeds, at which people would walk, unless severe energy dissipation occurs in the compliance. A
model whose legs have mass as well as elastic compliance predicts well the relationship between speed
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and stride length in human walking.

1. INTRODUCTION

People walk to travel slowly and run to go faster. In
both gaits the legs move alternately, half a cycle out of
phase with each other, but the two gaits are never the
less very different. In walking, there are times when
both feet are on the ground simultaneously because
the duty factor (the fraction of the duration of the
stride for which each foot is on the ground) is greater
than 0.5. In running, however, the duty factor is less
than 0.5 so there are times when both feet are off the
ground. Force plate records of walking show that
while each foot is on the ground it exerts two broad
peaks of force with an intervening minimum (figure
la—c). Records of running however show only one
maximum, if we ignore the very brief initial peak of
force due to the impact of the moving foot on the
ground (figure 1d).

Our manner of movement also changes with speed,
within each gait. Both in walking and in running,
stride length increases with speed. (Stride length is the
distance between corresponding points on successive
footprints of the same foot.) As walking speed in-
creases, the minimum between the two force maxima
becomes deeper (figure la—c).

There is some evidence from measurements of
oxygen consumption that the effect of these changes is
to minimize the energy cost of locomotion, at each
particular speed. The change from walking to running
is made at approximately the speed at which walking
and running have equal energy costs: below that
speed walking is more economical than running and
above it the reverse is true (Margaria 1976). The
stride length that is normally used at any given
walking speed is the one that minimizes energy
consumption (Zarrugh 1974).

The relationship between the mechanical perfor-

mance of muscles in locomotion and the rates at which
they use metabolic energy is very imperfectly under-
stood (Alexander 1991), but we can expect to find as a
general rule that gaits that require less work from the
muscles also consume less metabolic energy.

Alexander (1980) adopted the hypothesis that gaits
are adapted to minimize the work required for
locomotion, at each speed. A simple mathematical
model was made to walk or run, using different duty
factors and exerting different patterns of force on the
ground. The work done by the legs in the course of
each stride was calculated and the gait that minimized
this work, for given speed and stride length, was
assumed to be optimal. The model successfully pre-
dicted the changes in the patterns of force (with
deeper or shallower minima) that accompany changes
of human walking speed. It also predicted correctly
that the change from walking to running should be
made abruptly at a critical speed. Never the less, it
had serious shortcomings.

1. It predicted too high a speed, for the transition
from walking to running. It was suggested that this
was due to its ignoring the elastic compliance of the
leg and foot (on which see Ker et al. 1987).

2. It predicted infinitesimal duty factors (therefore,
infinite ground forces) for optimal running gaits. This
fault could be eliminated by setting an upper limit to
the force that the legs can withstand, but it will be
shown in this paper that it disappears in any case,
when account is taken of leg compliance.

3. It ignored the masses of the legs and so the
energy cost of swinging them forward for successive
steps. Consequently, it predicted quite modest energy
costs for walking with duty factors close to 1.0 (which
would involve unrealistically fast forward swinging of
the legs).

4. It assumed an empirical relationship between
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Figure 1. Records of the vertical component of the force exerted on the ground by one foot of a man walking at (a), 0.9 m s~
(b), 1.5 m s~ and (¢), 2.1 m s~!; and running at (d), 3.6 m s='. From the data of Alexander & Jayes (1980).

stride length and speed. If instead it had been used to
calculate costs for different stride lengths, it would
have shown infinitesimally short strides as optimal.

In this paper, I attempt to correct these faults by
taking account of the mass and elastic compliance of
the legs. I seek the optimal combination of duty
factor, force pattern and stride length for each speed. I
also improve the model by using simpler mathemati-
cal notation. I consider only bipedal gaits, but the
model could easily be extended, as the previous one
was (Alexander 1980), to symmetrical quadrupedal
gaits.

Although the model has been made rather more
realistic by taking account of leg mass and com-
pliance, it remains very simple. My aim is not to
imitate the movements of the human body but to
show in the simplest possible way how they can be
explained.

There are of course other simple models of bipedal
walking (Mochon & McMahon 1980; McGeer 1990a)
and running (Blickhan 1989; McMahon & Cheng
1990; McGeer 19905). These have contributed greatly
to our understanding of human movement. The
distinctive features of the model presented in this
paper (and of its predecessor, Alexander (1980)) are:
first, that the same model can be made either to walk
or to run, helping us to understand the gait transition,

Y| (a)
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and secondly, that it seeks to explain the marked
change in the pattern of ground forces that occurs as
walking speed increases.

2. THE MODEL

The model (figure 2a) is two-dimensional, and consists
of a rigid trunk and two legs. Each leg has a telescopic
actuator that can exert force and make it lengthen
and shorten, representing the muscles that change the
length of real legs by flexing and extending the knee
and ankle joints. A compression spring aligned with
the long axis of the leg represents the elastic com-
pliance conferred on real legs by the properties of
tendons and ligaments (Ker e/ al. 1987). There is also
a torque actuator at the hip, representing the muscles
that flex and extend real hip joints. The total mass m
of the model is made up of masses km for each of the
legs and (1-2 #)m for the trunk. The trunk has its
centre of mass located at the hip joints, and its
moment of inertia is so large that pitching movements
of the trunk are negligible. The legs are treated as
point masses, located at a constant distance r from the
hip joint: notice that this distance does not change as
the leg lengthens and shortens.

The model walks or runs, setting down the feet at
equal intervals. Each foot is alternately on the ground

(b)

X

By £

xr

Figure 2. (a) The model described in the text. Stars mark the centres of mass of the legs. (b) A free body diagram showing the
forces that act on the model.
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(stance phase) and off (swing phase). The mid points
of the stance phase of the left foot occur at times 0, 7,
2T etc. and of the right foot at 0.57, 1.5T, 2.5 etc.
Thus T is the stride period. The duty factor is f, so the
first stance phase of the left foot (for example) extends
from time — 72 to + B7T/2. At time ¢ in this interval,
the vertical component of the force that it exerts on
the ground is given by

3nmg wl 3nt
Fy,lefl = {m}{cos (ﬁ_T> — ¢ COS (ﬁ)} (1)

The term in the second set of braces is a truncated
Fourier series, in which the factor q will be varied
between —0.33 and 1.00 to give different patterns of
force. The lack of sine terms and of even-numbered
cosine terms ensures that the force is zero at the
beginning and end of the stance phase and that the
force pattern is symmetrical about zero time. For
generality, the series would have to be continued with
an infinite number of odd-numbered cosine terms, but
it has been shown that the truncated series is capable
of imitating reasonably well, the patterns of force that
people exert when they walk and run (Alexander &
Jayes 1980). The term in the first set of braces ensures
that the mean vertical force exerted by the two feet
over an integral number of strides is equal to the
weight mg of the body.

Similarly, the right foot is on the ground from time
(1-B)T)J2 to (14 B)T/2 and during that time exerts a
vertical component of force

P 3nmg mft 1
oA )]
S/t 1
q Cos |:—B—<7_, — ‘2‘>:|} (2)

The model moves in Cartesian space taking strides
of length A. The coordinates of the hip joints are (0,y,)
at time 0, (x,y) at time ¢ and (A/2,y,) at time 77/2. The
forces on the feet are always in line with the hip joints
so, during the stance phases that we have been
considering, the horizontal components of the forces
on the two feet are given by

Fx,]eﬁ =X Fy,lel‘l/y) (3)
Fx,righl = (x - /\/2) Fy,right/y' (4)

This assumption is realistic, provided that the ‘hip’
joint of the model is not interpreted as being coinci-
dent with the human hip. Alexander & Jayes (1980)
showed that equations (3) and (4) describe well the
horizontal components of force exerted by human feet,
provided that y is not interpreted as the height of the
hip, but of a point in the body at 1.7 times the height
of the hip. The forces on the feet of walking people
remain more nearly in line with the anatomical hip
than this may suggest, because the centre of pressure
moves progressively from heel to toe during the stance
phase (See Debrunner 1985).

Let the long axis of a leg (defined as the line
through the hip joint and the leg’s centre of mass)
make an angle 6 with the vertical. We will use

Phil. Trans. R. Soc. Lond. B (1992)
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subscripts to distinguish between the angle 0 of the
left leg, and 0, of the right. While a foot is on the
ground, its leg’s angular velocity 6 is assumed constant
and equal to #/y,, where @ (=A/T) is the mean
velocity of the biped over a complete stride. This
conveniently simple assumption of constant angular
velocity implies that the centre of mass of the leg
remains very nearly but not precisely on the line from
hip to foot. The foot leaves the ground at a time 772
after the mid point of the step, at which time the angle
0 is BaT|2y,.

While the foot is off the ground, angle 6 changes
sinusoidally as in McGeer’s (1990a) ‘synthetic wheel’
model of walking. For example, in the first swing
phase of the left leg

0,=4 sin [B (t— T)2)], (5)

where 4 and B are constants. This equation implies
that the leg is vertical at the mid point of the swing
phase, at time 77/2. The values of 4 and B are fixed by
the requirement of a smooth transition from stance
phase to swing phase: at the instant when the foot
leaves the ground, 6 must be B T/2y, and 6 must be i/
Yo, as explained in the preceding paragraph. For any
particular duty factor §, values of 24y,/@T and BT/2
can be calculated. Hence it can be shown that
equation (5) implies that the range of angles through
which the leg moves in the swing phase is 1.06 times
the range for the stance phase in a walk with f=0.6,
and 1.41 times the range for the stance phase in a run
with f=0.3. This seems reasonably realistic.

Figure 24 is a free-body diagram of the biped. It is
apparent that

Fa+ Fo= (1-2k) mi+km (& +%,). (6)
Note that the x-coordinate x of the centre of mass of
the left leg is given by
Xl=x—7 sin ‘91,
whence & =%—7r 6 cos 0,
$i=i&—r 0, cos 8, +7r 6% sin 0,
and similarly for the right foot. Hence
Fy+ Fo=mi—kmr (0 cos 0,40, cos 0,— 6% sin 0,—
62 sin 0,),
i=(Fy+ Fy)/m+kr(0) cos 6+ 0, cos 0,— 6% sin 6,—
62 sin 6,). (8)
Figure 24 also shows that
Fp+ Fye=mg+ (1-2k) mij+km (i +7.), (9)
and y=y—r cos O,
h=y+r 6, sin 0,
h=i+r 6, sin 6, +r 6% cos 0y, (10)
and similarly for the right foot. Hence

F,

W+ Fye=mg +mij + kmr (6, sin 6,+ 0, sin 0, +

6% cos 6, + 62 cos 0.),
§=(Fp+F,)/m—g—kr (0 sin6y+ 0, sin 6,+
6% cos 0+ 6% cos 0,). (11)

The coordinates (x,y) of the hip joints at successive
times ¢ have been obtained by numerical integration


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

192 R. McN. Alexander  Bipedal locomotion

of equations (8) and (11), using the information
already given about the forces F (equations (1) to (4))
and leg angles 0.

The telescopic actuators that alter the lengths of the
legs do work only while their feet are on the ground.
During the first step, while the left foot is on the
ground at (0,0) the length of the left leg is

h=(® + yn (12)

Similarly, while the right foot is on the ground at
(A/2, 0)

Le=[(x—MN2)2+ %)= (13)
The resultant force on the left foot is
Fl:(Fxl‘i‘Fyl)%a (14)

always acting (as already specified) in line with the
hip joint. In a time increment 6¢ in which F) increases
by an increment J0F, the spring in the left leg
(compliance C) is compressed by C+dF, storing strain
energy FiC+0F. Thus the work done in this time
increment by the telescopic actuator of the left leg is

Wi =F (8l+C-8F), (15)

and similarly for the right leg. The numeral 1 in the
subscript on the left hand side of equation (15)
indicates that this work is done by the telescopic
actuator: work done by the torque actuators will be
distinguished by numerals 2.

To determine the work done by the torque actua-
tors, we need to know the moments M at the hip
joints. Take moments about the left hip in figure 25,
remembering that the resultant of F,; and F is aligned
with the hip

M= kmr[% cos 6— (fi+g) sin 0]. (16)

Substitute for # and §, using equations (7) and (10),
and obtain (after a little algebra)

My = kmr[% cos 01— (ij+g) sin O—r 6y]. (17)

A similar equation can be obtained for the right leg.
The work done by the left hip actuator in the time
increment 0¢ is

51/1/]2=M1'501. (18)

The model is frictionless and is travelling over level
ground. It has the same velocity at corresponding
stages of successive strides. Consequently, the net work
done by the actuators, over a complete stride, is zero:
positive work done by them at one stage of a stride is
matched by negative work at another. (An actuator
doing negative work behaves like a brake, degrading
mechanical energy to heat.) As in Alexander (1980)
we will estimate the energy cost of a stride by
summing the increments of positive work only. To do
this, we need actually consider only one quarter stride
because the symmetry of the model’s movements
ensures that equal work is done in successive half
strides, and positive work done in one quarter stride is
matched by negative work done in the next. We will
define the mechanical cost of transport H as the sum of
the increments of positive work per unit weight of
biped, done while travelling unit distance

Phil. Trans. R. Soc. Lond. B (1992)

H =
t= T4

(2/mg)) Y, (16Wy| + [6Wq| + [6Wyg| + |6W,qf.  (19)

t=0

The vertical lines || signify that the absolute values
of the increments of work are to be summed, irrespec-
tive of sign. The sum is therefore equal to the sum of
positive work increments over a half stride.

Symmetry requires that at time 0, when the hip is
vertically over the supporting foot, the hip must be
travelling horizontally. Calculations were performed
on a microcomputer by starting the model at time 0,
with the hips at (0,y,) and travelling horizontally. The
movements of the model, and the work performed by
the actuators, were determined for the first quarter
stride by numerical integration, and the cost of
transport was calculated by means of equation (19).
The program tried different initial velocities dx/d¢
until one was found that gave a mean velocity u over
the quarter stride, that was within 0.29%, of the
required value. The accuracy of the calculations was
checked by increasing the number of integration steps
by a factor of four, for a representative selection of
combinations of speed, shape factor and duty factor.
The increased number of steps altered the calculated
cost of transport by more than 49, in only five out of
170 trials. Errors of this magnitude are trivial, for the
purposes of this paper.

3. VALUES FOR PARAMETERS

Results will be presented in dimensionless form using
Yo as the unit of length, m as the unit of mass and
(4o/2)* as the unit of time. There is therefore no need
to specify particular values for leg length (represented
by y,) or body mass (m). However, values had to be
chosen for the other anatomical parameters. They
were selected to match approximately the proportions
and properties of the human body.

Each leg of a human adult represents about 0.16 of
total body mass (Winter 1990). Therefore £ is taken to
be 0.16. It can be calculated from data in Winter
(1990) that the radius of gyration of the limb about
the hip is about 0.52 of the height of the hip joint from
the ground, so 7/y, is taken to be 0.52.

To select an appropriate elastic compliance C for
the legs we will use the data of Ker ¢t al. (1987), who
calculated the strain energy stored in the Achilles
tendon and foot of a 70 kg man running at a middle-
distance speed. They estimated that 52 J strain energy
was stored when the peak force of 1900 N acted on the
foot. A force F on a linear spring of compliance C
stores F2C|2 strain energy, so we can estimate C as
2x%52/19002=2.9x 10 5m N~1. The dimensionless
parameter that we require is Cmg/y,. We have already
noted that to make equations 3 and 4 model the
horizontal components of force on human feet, we
have to make y, 1.7 times the length of the human leg,
or about 1.6 metres. The gravitational acceleration g
is 9.8ms~2 Thus Cmgly, is given the value
2.9x107°x 70 x 9.8/1.6 =0.012. The appropriateness
of this value will be considered further in the Discus-
sion section.
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We have to choose for investigation appropriate
ranges of shape factor ¢, duty factor B, speed @ and
stride length A. If the vertical component of the force
on the ground is to remain positive throughout the
step, ¢ is restricted to the range —0.33 to 1.00. We will
therefore investigate only this range of shape factors.
The duty factor f could in principle take any value
between 0 and 1.

Speed will be represented by the dimensionless
parameter @/(gyo):. With g=9.8 m s=2 and y,=1.6 m
(see above), this parameter is 0.25 times the numerical
value of the speed in metres per second. Results will be
presented for speed parameters ranging from 0.1
(corresponding to an extremely slow walk, at 0.4 m
s71) to 1.2 (corresponding to a run at 5 m s~1). Adult
people commonly walk at speeds in the range 0.8 to
1.7ms~! (Bornstein & Bornstein 1976) and break
into a run at speeds above 1.9 m s~! (Thorstensson &
Roberthson 1987).

Stride length A increases with speed. Alexander &
Maloiy (1984) give values for the relative stride length
(A/h), where & is the height of the hip joint from the
ground. They show that for human walking and
running, A/k is approximately equal to 2.5 [i/(gh)*]*®.
With y,=1.74, as required to make equations (3) and
(4) represent satisfactorily the horizontal forces
exerted by human feet (see above), this makes Afy,
approximately equal to 1.7 [@/(gy,)?]*%. It will be
convenient to define a stride factor . such that

Nyo=S5 [ (gyo)*1"". (20)

Many of the calculations will be made using the
empirical value, S=1.7, but results will also be
presented for a range of stride factors so that optimum
stride lengths can be predicted.

(@)

1.0
1.6

08 0.8

shape factor

(c)

1.0
0.2

0.5F

shape factor

(=}
T

0 0.5 1.0

duty factor
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4. RESULTS
(a) Stiff, massless legs

Figure 3 shows the mechanical cost of transport when
the legs have no mass (k=0) and no elastic com-
pliance (C=0), making the model identical with the
one investigated by Alexander (1980). Each of the
graphs (a) to (d) shows results for a different speed. In
each, lines of equal cost of transport are shown for the
whole range of possible duty factors and shape factors.
However, the effects of altering stride length are not
shown: an appropriate stride length has been chosen
for each speed by applying equation 20 with a stride
factor of 1.7.

At a dimensionless speed of 0.1 (figure 3a), the
model with stiff, massless legs uses least energy if it
walks with high duty factors f and low shape factors ¢.
The minimum cost of transport is obtained with
f=0.9, = —0.1. Increasing the dimensionless speed
to values not exceeding 1.0 reduces the optimum duty
factor and increases the optimum shape factor. At a
dimensionless speed of 0.3 (figure 35) the optimum is
close to f=0.7, 4=0.2 and at 0.6 (figure 3¢) it is
approximately $=0.6, ¢=0.6. However, at dimen-
sionless speeds above the critical value of 1.0 (figure
3d) the optimum gait is a run with zero duty factor.

As Alexander (1980) pointed out, this model suc-
cessfully predicts the reduction in duty factor and
increase in shape factor that are observed as people
walk faster. It also predicts an abrupt change to
running, at a critical speed. However, the predicted
critical speed is much too high. For an adult human
with y,=1.6 m (see above) it represents a speed of 4 m
s~!, but adults actually break into a run at only about
1.9ms~! (Thorstensson & Roberthson 1987). The

(b)

0.2

0 0.5 1.0
duty factor

Figure 3. Mechanical costs of transport for the model with stiff, massless legs at dimensionless speeds of (a), 0.1; (), 0.3; (¢),
0.6 and (d), 1.2. Shape factor is plotted against duty factor, with contours showing costs of transport. Note that in this and
subsequent figures, successive contours represent costs of transport differing by a factor of two (except in the case of contours

shown as broken lines). The stride factor is 1.7 throughout.
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next subsection will show that this prediction is
changed when account is taken of the elastic com-
pliance of the legs.

(b) Compliant, massless legs

Figure 4 shows costs of transport for the model
when its legs are again given no mass (k=0), but are
given an elastic compliance based on that of human
legs (Cmgly,=0.012: see above). The costs for high
duty factors are little different from the corresponding
costs for the stiff model, shown in figure 3, but each
graph shows a deep minimum at low duty and shape
factors. This represents a gait in which the telescopic
actuator of each leg holds almost constant length,
allowing the biped to bounce along on its springs like
a rubber ball. A frictionless model like this with
compliant, massless legs could travel with zero energy
cost, at any chosen speed and stride length (Blickhan
1989; McMahon & Cheng 1990). The models pre-
sented in this paper give finite energy costs at the low-
duty-factor minima, only because of a restriction that
was adopted to avoid having an unmanageable
number of variables: we restricted the range of
admissible force patterns to those that could be
represented by a two-term Fourier series (equation 1).

Figure 4 shows results only for duty factors of 0.1 or
more, but if lower duty factors were included we
would see costs approaching infinity as the duty factor
approached zero. The reason is that at very low duty
factors enormous forces act on the feet, causing very
large compressions of the passive springs that have to
be compensated by extension of the telescopic actua-
tors. The strain energy stored in a leg after a footfall,
at very low duty factors, is far more than the kinetic

shape factor
o P
5 =)
b
- ]
o
o _—
o0
=)
S
/(

shape factor

05 //ij

0.1 0.3 0.5 0.7 0.9
duty factor

-/8

and potential energy loss, so most of it has to be
supplied by the actuator. When the spring recoils it
releases far more energy than is needed to increase the
body’s kinetic and potential energy, and the actuator
must do negative work to degrade the excess to heat.

Thus the introduction of leg compliance has little
effect on the model’s energy costs at high duty factors,
and profound effects at low ones. We will now note an
effect at moderate duty factors. At a dimensionless
speed of 0.3, the walking energy minimum occurs at a
shape factor of about 0.2 for the stiff model (figure 34)
and 0.4 for the compliant one (figure 44); and at a
dimensionless speed of 0.6 the minimum occurs at a
shape factor of 0.6 for the stiff model and 1.0 for the
compliant (figure 3¢ and 4¢). The introduction of
compliance shifts this minimum to higher shape
factors, especially at faster walking speeds.

Figures 4a,b, and ¢ show two minima each, one at a
low duty factor (running) and the other at a high duty
factor (walking). We have noted that optimal running
would require no positive or negative work from the
actuators, if the restriction on the force patterns
imposed by equation (1) were relaxed. There is no
reason to believe that this or any other reasonable
change to the model would reduce the work require-
ment at the walking minimum to zero. This suggests
that if work minimization were the sole criterion,
compliant-legged bipeds should always run, no matter
how slowly they were travelling. Why then do humans
and animals walk at low speeds? We will return to this
problem in the Discussion section.

(¢) Legs with mass and compliance

Figure 5 shows results for a biped whose legs have
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Figure 4. Mechanical costs of transport for the model with compliant, massless legs at dimensionless speeds of (a), 0.1; (4), 0.3;
(¢), 0.6; and (d), 1.2. Shape factor is plotted against duty factor, with contours showing costs of transport. The stride factor is

1.7 throughout.
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Figure 5. Mechanical costs of transport for the model whose legs have mass and compliance, at dimensionless speeds of (a),
0.1; (), 0.2; (¢), 0.3; (d), 0.4; (¢), 0.5; and (f), 0.6. Shape factor is plotted against duty factor, with contours showing costs of
transport. The stride factor is 1.7 throughout. Arrows on some of the graphs indicate the duty factors to which the graphs for
the same speeds in figure 6 apply. Points are calculated from the empirical equations of Alexander & Jayes (1980).

mass as well as elastic compliance. Note that some of
the speeds chosen for illustration are different from
those that appear in Figures 3 and 4.

Because the legs now have mass, the hip actuators
may have to do work to give them kinetic energy at
the start of each forward or backward swing, and
negative work to stop them swinging at the end. This
would not be the case if the duration of the swing
phase were long enough for the leg to swing passively
forward as a pendulum, but the swing phase is too
short for this in the range of speeds considered in this
paper, unless stride factors longer than the empirical
value of 1.7 are used.

The work required of the hip actuators is low at low
duty factors and higher at high ones, which allow less
time for the forward swing of the leg. It approaches
infinity as the duty factor approaches 1.0. For this
reason, the walking energy minima shown in figure 5
are shifted to lower duty factors, in comparison with
the minima for the same speeds in figures 3 and 4. The
effect is most marked at the lowest speed: the walking
energy minimum occurs at a duty factor of about 0.9
in figure 4a, but at about 0.65 in figure 5a.

This model, unlike the one with massless legs,
cannot run without energy cost. However, the run-
ning energy minima in figure 5 are still the global
minima because leg mass adds less to the work
required for locomotion at low duty factors, than at
high ones.

So far we have set stride lengths to the values
calculated for each speed from equation (20), using
the empirical value of 1.7 for the stride factor S. Now
we will investigate the effect of varying stride length.

Phil. Trans. R. Soc. Lond. B (1992)

Figure 6 shows for several speeds how work require-
ments vary with shape factor and stride factor, if duty
factor is held constant. The duty factors have been
chosen to correspond approximately with the walking
energy minima shown in figure 5.

Each of the graphs in figure 6 shows that the cost of
transport has a minimum value, at a particular
combination of shape factor and stride factor. In every
case this stride factor lies between 1.5 and 2.0, so is
close to the empirical value of 1.7.

The set of possible gaits permitted by the model (for
any particular speed) can be represented as a three-
dimensional space, in which the dimensions are duty
factor, shape factor and stride factor. Figures 5 and 6
show mutually perpendicular sections through this
space. It seems that the walking gaits which have
minimum cost of transport lie close to the intersections
of the shape factor — duty factor graphs (figure 5) and
the corresponding shape factor — stride factor graphs
(figure 6).

Although the model indicates an optimum stride
length for walking at any given speed, it does not give
optima for running. It is possible to find a running
gait that requires no work from the telescopic actua-
tors, for any combination of speed and stride length.
The longer the stride, the fewer strides are needed to
cover a given distance and the less work is required of
the hip actuators. Thus the model seems to tell us that
a runner should take the longest possible strides.
Runners actually increase stride length, as they
increase speed (Hoégberg 1952). The model of
McMahon & Cheng (1990) gave an optimum stride
length for each speed of running, only because they
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Figure 6. The effect of varying stride length on the mechanical cost of transport of the model whose legs have mass and
compliance. The dimensionless speeds are (a), 0.1; (4), 0.2; (¢), 0.3; and (d), 0.5. Shape factor is plotted against stride factor,
with contours showing cost of transport. Duty factors are as indicated by arrows on the graphs for the same speeds in figure 5.

constrained their model in a way that we have not.
They specified that the vertical component of the take-
off velocity should be the same for all forward speeds, so
that the runner should always rise and fall through the
same vertical range during the aerial phases of its
strides. With this constraint, their model was capable
of reproducing the observed relationship between
human and animal stride lengths, and running speed.

5. DISCUSSION
(a) Limaitations of the model

The model has been kept extremely simple. For some
purposes, we would require a model that imitates the
human body much more closely, but extreme simpli-
city seems a merit for our present purpose, to explain
why we change our gaits as we do, as we increase
speed.

Several features of the model seem rather unsatis-
factory, but it is not obvious how they could be
remedied without making it more complex.

First, the model’s ‘hip’ does not correspond to the
anatomical hip. To make equations (3) and (4) model
satisfactorily the forces exerted by human feet, we had
to regard the model’s hip height y as 1.7 times the hip
height % of an equivalent human. Consequently, the
period with which the model’s leg would swing as a
pendulum is /1.7 =1.3 times the pendulum period of
the leg of an equivalent human. This could not have
been remedied by moving the centre of mass higher up
the model’s leg: if this had been done, the fluctuations
of the kinetic energy of the swinging leg would have
been unrealistically small.

Secondly, the model has no knee joint. Mochon &
McMahon (1980) showed how the time taken for a leg
to swing forward passively is affected by the presence
of a moveable knee joint.

Thirdly, the elastic compliance of the leg is assumed
to be constant. When the leg is straight, as in the
stance phase of walking, the Achilles tendon and the
arch of the foot are probably the most important
contributors to leg compliance, as assumed here. In
the stance phase of running, however, the knee is
somewhat bent and substantial force is required in the
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quadriceps muscles. The quadriceps tendon may then
add substantially to the overall compliance of the leg.

Finally, it has been assumed that the quantity to be
minimized is the work performed by the muscles.
C. R. Taylor and his colleagues have argued forcefully
(for example, in Kram & Taylor (1990)) that the
forces developed by muscles may be more important
than the work that they do, in determining the
metabolic energy cost of running. It seems clear that
work performance and force development both affect
the metabolic cost of locomotion, which seems to be
the cost we should wish to minimize. Unfortunately,
our understanding of muscle function in locomotion is
not yet good enough to enable us to predict metabolic
costs from mechanical performance (Alexander 1991).

Despite these limitations, the model seems capable
of improving our understanding of walking and
running.

(b) Comparison of predictions with observed gaits

Alexander & Jayes (1980) made force plate records
of human walking and derived equations relating duty
factor and shape factor to speed. The points in figure 5
show the values predicted by their equations, for each
speed. In calculating these values from the equation, it
was of course necessary to remember that the model’s
hip height y, (used in the definition of dimensionless
speed) is 1.7 times the hip height of an equivalent
human. No point is shown in figure 5a because it
represents a lower speed than any of the records on
which the equations are based.

The empirical points in figure 5 show duty factor
decreasing and shape factor increasing, as speed
increases. The walking work minima predicted by the
model (and shown by contours) are affected by speed
in the same way. The empirical points are all quite
near the predicted minima, but do not coincide with
them. The predicted duty factors tend to be lower
than the observed ones. :

For each of the graphs in figure 5, the stride length
was given a value appropriate to the speed calculated
from the human stride lengths given by Alexander &
Maloiy (1984). Stride length is varied in each of the
graphs in figure 6, and duty factor is held constant.
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These duty factors were chosen to be close to the
values at the walking work minima predicted by the
model, but are also close to the values given for each
speed by Alexander & Jayes’ (1980) empirical equa-
tions. Figure 6 shows work minima at stride factors
between 1.5 and 2.0, close to the empirical value of
1.7. Thus stride length at the walking work minima
increases with speed, much as observed stride lengths
increase with speed.

The model predicts work requirements for all
possible combinations of duty factor, shape factor and
stride length. We have seen that the values of these
quantities used by people when they walk are close to
those required to minimize the work required of the
model’s actuators if the model is constrained to walk
(i.e. to use duty factors of 0.5 or more). However, it
has been shown that for every speed a running gait
can be found, which requires less work. To minimize
the work required of its actuators the model should
always run, even at low speeds. Why do people walk?

Measurements of the oxygen consumption of adult
humans have shown that at speeds below about 2.2 m
s~1, walking requires less metabolic energy than
running, but at higher speeds the converse is true
(Margaria 1976). People change from walking to
running at about this speed, which corresponds to a
dimensionless speed for the model of 0.55. Why does
the model fail to predict that walking will be more
economical than running at low speeds? There are at
least three possible reasons.

First, the model predicts very low duty factors
(therefore, very large forces) for the running gaits that
minimize work requirements. These duty factors
would be higher if account were taken of the likely
difference of leg compliance between walking and
running, as discussed above. Even in that case,
however, predicted optimum duty factor would still
increase with increasing speed. Suppose that duty
factors below some critical value are impossible,
because they would imply forces that the leg could not
withstand. In that case, the low costs of transport that
the model predicts for optimal running at low speeds
could not be attained, and the optimal walking gait
might be more economical than any possible running
gait.

Secondly, running with low duty factors requires
muscles that can develop force and relax very rapidly,
so fast muscles might be needed; but fast muscles are
less economical than slow ones (Heglund & Cavagna
(1987)).

Finally, in formulating the model we made the
unrealistic assumption of perfect elasticity. The struc-
tures that serve as springs in human legs do not
return, in their elastic recoil, all the work that was
done to deform them. Instead, some of the energy is
dissipated as heat. The energy dissipation is about 7%,
for tendon (Bennett ef al. 1986) and may be as much
as 229, for the arch of the foot (Ker et al. 1987). When
the model with perfect springs runs, very little work is
required of the actuators, but the springs store and
return very large quantities of strain energy. If the
springs were imperfect, dissipating some of this energy,
the actuators might have to do substantial work to
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replace it and the advantage might shift from running
to walking.

To assess the possible effects of imperfect elasticity,
a few calculations have been performed in which it has
been assumed that whenever strain energy is stored in
a leg, a fraction is dissipated and has to be replaced by
work done by muscles. If the strain energy increases
by OE, energy a*OF is lost, where a is the fractional
energy dissipation. Thus the mechanical cost of trans-
port is given by a modified form of equation (19).

1= T4
H=(2/mg\) Y, (I6Wul + [0W,| + |0Wy]

t=0

+ |0W.o| + al0E| + aldE]). (21)

Adult humans break into a run at about 2ms™1,

corresponding to a dimensionless speed for the model
of 0.5. Accordingly, a few calculations were performed
using equation (21) to discover how large a fractional
energy dissipation would be needed to make optimal
walking more economical than optimal running, at a
dimensionless speed of 0.5. At this speed, with the
stride factors fixed at 1.7, the walking work minimum
was found to occur at a duty factor of 0.50 and a
shape factor of 1.00; and the running minimum at a
duty factor of 0.17 and a shape factor of —0.02 (figure
5¢). At these minima, the mechanical costs of trans-
port for the frictionless model are 0.074 for walking
and 0.027 for running: the latter is considerably the
more economical. As the fractional energy dissipation
a is increased, the cost of running increases faster than
the cost of walking, overtaking it when the energy
dissipation is 0.31. (Both costs are then 0.097.) Thus
the observed speed of transition from walking to
running is not predicted by the modified model unless
the energy dissipation is given this value, which is very
much higher than the measured values (noted above)
for tendon and for the arch of the foot.

For a slow running speed (figure 5f) the model
predicts an optimum shape factor of zero and an
optimum duty factor of 0.2. The shape factor is
reasonably close to the mean value of —0.1 reported
for human runners by Alexander & Jayes (1980). The
duty factor, however, is much lower than the values of
0.35-0.40 used by humans running slowly (Alexander
& Jayes 1980). Even in faster running, the duty factor
does not fall below about 0.27 (Hogberg 1952). To
double the optimum duty factor to make it match the
observed value for slow running, it would be necessary
to increase the compliance of the legs by a factor of
four. We have noted that the compliance used in our
calculations is probably too low for a leg with its knee
bent in the support phase of running, but it seems
unlikely to be wrong by a factor of four.

Thus the model seems to explain many aspects of
human walking and running, but leaves some ques-
tions unanswered. It does not make it clear why
walking is preferred to running at low speeds, or why
runners use such high duty factors. It remains uncer-
tain whether this is because the gait that minimizes
work may not be the one that minimizes metabolic
costs, or for some other reason.
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